Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 141: 182-193, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408819

RESUMEN

Polydopamine (PDA) and metal-organic skeleton HKUST-1 were co-deposited on the base membrane of hexamethylenediamine (HDA)-crosslinked polyetherimide (PEI) ultrafiltration membrane as the interlayer, and high-throughput organic solvent nanofiltration membrane (OSN) was prepared by interfacial polymerization and solvent activation reaction. The polyamide (PA) layer surface roughness from 28.4 nm in PA/PEI to 78.3 nm in PA/PDA-HKUST-10.6/PEI membrane, reduced the thickness of the separation layer from 79 to 14 nm, and significantly improved the hydrophilic, thermal and mechanical properties. The flux of the PA/PDA-HKUST-10.6/PEI membrane in a 0.1 g/L Congo Red (CR) ethanol solution at 0.6 MPa test pressure reached 21.8 L/(m2·hr) and the rejection of CR was 92.8%. Solvent adsorption test, N, N-dimethylformamide (DMF) immersion experiment, and long-term operation test in ethanol showed that the membranes had high solvent tolerance. The solvent flux test demonstrated that, under the test pressure of 0.6 MPa, the flux of different solvents ranked as follows: methanol (56.9 L/(m2·hr)) > DMF (39.6 L/(m2·hr)) > ethanol (31.2 L/(m2·hr)) > IPA (4.5 L/(m2·hr)) > N-hexane (1.9 L/(m2·hr)). The ability of the membranes to retain dyes in IPA/water dyes solution was also evaluated. The flux of the membrane was 30.4 L/(m2·hr) and the rejection of CR was 91.6% when the IPA concentration reached 50%. This OSN membrane-making strategy is economical, environment-friendly and efficient, and has a great application prospect in organic solvent separation systems.


Asunto(s)
Colorantes , Etanol , Indoles , Estructuras Metalorgánicas , Polímeros , Solventes , Rojo Congo , Dimetilformamida , Nylons
2.
RSC Adv ; 14(6): 4252-4263, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38292269

RESUMEN

Yttrium is an important rare earth element and is widely used in fields such as special glass preparation, metallurgy, and materials science. However, it is difficult to recover yttrium ion waste from dilute solutions with traditional processes, resulting in a significant waste of rare earth resources. The simple, effective, and easy-to-operate adsorption method is the most promising method for recovering yttrium, which is of great significance for sustainable development of the rare earth industry. In this study, activated carbon was prepared from Camellia oleifera fruit shells (COS) using phosphoric acid activation, and efficient recovery of Y(iii) from the Camellia oleifera fruit shell activated carbon was studied. Adsorption equilibrium data showed that this activated carbon had a Y(iii) adsorption capacity of 35.41 mg g-1, indicating significant potential for recovery of yttrium ions. The adsorption of Y(iii) by the activated carbon prepared from COS was consistent with the Langmuir model, and the adsorption data were consistent with the pseudo second-order kinetic model, indicating that the adsorption process was primarily chemical adsorption. After adsorption, the surface of the activated carbon contained large amounts of N, O, and Y, indicating that Y(iii) was stably adsorbed. The mechanisms for adsorption of Y(iii) on three types of activated carbon were studied through DFT calculations. The results showed that Y(iii) interacted with the carbon atoms on the surfaces to form new chemical bonds. The yttrium ion adsorption capacities for the three different activated carbons decreased in the order C I > C II > C.

3.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500896

RESUMEN

A micro-electrolysis material (MEM) was successfully prepared from carbothermal reduction of blast furnace dust (BFD) and coke as raw materials in a nitrogen atmosphere. The MEM prepared from BFD had strong ability in removing methyl orange, methylene blue, and rose bengal (the removal rates of methyl orange and methylene blue were close to 100%). X-ray diffraction showed that the iron mineral in BFD was ferric oxide, which was converted to zero-valent iron after being reduced by calcination. Scanning electron microscopy showed that nano-scale zero-valent iron particles were formed in the MEM. In short, the MEM prepared from BFD can effectively degrade organic pollutants.

4.
RSC Adv ; 11(8): 4751-4759, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424401

RESUMEN

Rare-earth elements (REE), including La, are critical raw materials in many technological advancements. Collection of physically adsorbed REEs on clay minerals can be realized first by ion-exchange leaching, followed by adsorption enrichment. Ever increasing demand and limited resources of REEs have fueled the development of nanostructured adsorbents. In this paper, multi-walled carbon nanotubes (MWCNTs) were purified using concentrated H2SO4 and HNO3, then coupled with magnetic Fe3O4 nanoparticles to make low concentration La ion extraction from water possible. The MWCNT@Fe3O4 composites were further crosslinked with 0.1 wt% epichlorohydrin and functionalized with 0.5 wt% carbon disulfide to achieve a La3+ adsorption capacity of 23.23 mg g-1. We fully probed the morphology, crystallinity, chemical composition, and magnetic properties of the as-prepared adsorbent by scanning/transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, vibrating-sample magnetometry, and thermal gravimetry. These results indicated that the MWCNT@Fe3O4 nanohybrid may be a promising candidate for recovering La ions from aqueous solutions.

5.
Appl Ergon ; 43(5): 850-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22326189

RESUMEN

Carpet layers have a high prevalence of occupational knee morbidity. One of the main causes is that they need to frequently 'kick' the bumper on the rear end of the knee kicker with one knee when laying a carpet. Considering the bumper's marked effects on kicking force transmission and safety, this study aims to improve the design of the knee-kicker bumper by reducing the risk factors. An improved pendulum-type impact-testing platform was designed as an evaluative apparatus, with the impulse and the coefficient of restitution serving as evaluative criteria. The newly developed bumper has improved firmness from drilled blind holes and an increase in effective forward force of 15%-138%, which implies lower operational demands and a lighter knee burden (i.e., less kicking energy results in the same work efficiency), and a softer contact surface that enhances operating comfort. The newly designed kicker was positively reviewed by subjects.


Asunto(s)
Diseño de Equipo , Pisos y Cubiertas de Piso/métodos , Traumatismos de la Rodilla/prevención & control , Traumatismos Ocupacionales/prevención & control , Adulto , Humanos , Masculino , Persona de Mediana Edad , Análisis y Desempeño de Tareas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...